Green Coverage Detection on Sub-orbital Plantation Images Using Anomaly Detection
نویسندگان
چکیده
The green coverage region is a relevant information to be extracted from remote sensing agriculture images. Automatic methods based on threshold and vegetation indices are often applied to address this task. However, sub-orbital remote sensing images have elements that can hinder the automatic analysis. Also, supervised methods can suffer from imbalance since there is often many more green coverage samples available than regions of gaps, weed and degraded areas. We propose an anomaly detection approach to deal with these challenges. Parametric anomaly detection methods using the normal distribution were used and compared with vegetation indices, unsupervised and supervised learning methods. The results showed that anomaly detection algorithms can handle better the green coverage detection. The proposed methods showed similar or better accuracy when compared with the competing methods. It deals well with different images and with the imbalance problem, confirming the practical application of the approach.
منابع مشابه
Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملSeparation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کاملPerformance Evaluation of Anomaly-Based Detection Mechanisms
Common practice in anomaly-based intrusion detection is that one size fits all: a single anomaly detector should detect all anomalies. Compensation for any performance shortcomings is sometimes effected by resorting to correlation techniques, which could be seen as making use of detector diversity. Such diversity is intuitively based on the assumption that detector coverage is different – perha...
متن کاملNovel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform
In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013